Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses

نویسندگان

  • Dominik Csiba
  • Peter Richtárik
چکیده

In this work we develop a new algorithm for regularized empirical risk minimization. Our method extends recent techniques of Shalev-Shwartz [02/2015], which enable a dual-free analysis of SDCA, to arbitrary mini-batching schemes. Moreover, our method is able to better utilize the information in the data defining the ERM problem. For convex loss functions, our complexity results match those of QUARTZ, which is a primal-dual method also allowing for arbitrary mini-batching schemes. The advantage of a dual-free analysis comes from the fact that it guarantees convergence even for non-convex loss functions, as long as the average loss is convex. We illustrate through experiments the utility of being able to design arbitrary mini-batching schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Dual Coordinate Ascent with Arbitrary Sampling

We study the problem of minimizing the average of a large number of smooth convex functions penalized with a strongly convex regularizer. We propose and analyze a novel primal-dual method (Quartz) which at every iteration samples and updates a random subset of the dual variables, chosen according to an arbitrary distribution. In contrast to typical analysis, we directly bound the decrease of th...

متن کامل

Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling

We study the problem of minimizing the average of a large number of smooth convex functions penalized with a strongly convex regularizer. We propose and analyze a novel primal-dual method (Quartz) which at every iteration samples and updates a random subset of the dual variables, chosen according to an arbitrary distribution. In contrast to typical analysis, we directly bound the decrease of th...

متن کامل

mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting

We propose a mini-batching scheme for improving the theoretical complexity and practical performance of semi-stochastic gradient descent applied to the problem of minimizing a strongly convex composite function represented as the sum of an average of a large number of smooth convex functions, and simple nonsmooth convex function. Our method first performs a deterministic step (computation of th...

متن کامل

Adversarial Multiclass Classification: A Risk Minimization Perspective

Recently proposed adversarial classification methods have shown promising results for cost sensitive and multivariate losses. In contrast with empirical risk minimization (ERM) methods, which use convex surrogate losses to approximate the desired non-convex target loss function, adversarial methods minimize non-convex losses by treating the properties of the training data as being uncertain and...

متن کامل

Parallelizing Stochastic Approximation Through Mini-Batching and Tail-Averaging

This work characterizes the benefits of averaging techniques widely used in conjunction with stochastic gradient descent (SGD). In particular, this work sharply analyzes: (1) mini-batching, a method of averaging many samples of the gradient to both reduce the variance of a stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method involving averaging the final few i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.02227  شماره 

صفحات  -

تاریخ انتشار 2015